Anatomy and Physiology 1
Chapter 3 Outline

Cells

- Cells—smallest living subunits of a multicellular organism
 - Work together with other cells
 - Vary greatly in size and shape—usually need a microscope
 - More than 200 kinds of cells in humans
- Cell structure
 - Cell membrane (plasma membrane)
 - Selectively permeable
 - Phospholipids, cholesterol, proteins
 - Phospholipid bilayer—double layer
 - Allows lipid-soluble compounds to move in and out by diffusion
 - Cholesterol
 - Decreases fluidity stabilizing the membrane
 - Proteins
 - Pores/channels
 - Carrier enzymes
 - Antigens when combined with oligosaccharides
 - Receptor sites for hormones or other compounds—triggers certain reactions in the cell
 - Nucleus
 - All cells except mature RBCs
 - Double layered nuclear membrane
 - Nucleolus (one or more)
 - Bundle of DNA, RNA, & protein
 - Forms RNA (rRNA, tRNA, & mRNA)
 - Contains chromosomes
 - 46 (double set)
 - Made of threads of chromatin—usually uncoiled
 - Coils during cell division
 - Gene = genetic code for 1 protein
 - Only genes for that cell are active
 - Cytoplasm
 - Liquid solution of dissolved minerals, gases, and other molecules
 - Contains organelles
- Organelles (Table 3-1, functions of organelles)
 - "Organs" of the cell
 - Ribosomes
 - Made of protein and rRNA
 - On ER or floating in cytoplasm
 - Synthesize protein
 - Endoplasmic reticulum (ER)
 - Membranous tubules that extend from the nuclear membrane to the cell membrane
 - 2 types
 - Rough ER—ribosomes on the surface
 - Synthesizes proteins in the ribosomes
 - Smooth ER—no ribosomes on the surface
 - Synthesizes lipids
 - Tunnels that transport materials around the cell including lipids and proteins produced by the ER
 - Golgi apparatus
 - Flat membranous sacs stacked like pancakes
 - Synthesize and package carbohydrates
 - Small sacs containing carbohydrates break off and fuse with the cell membrane where it is released out of the cell
 - Mitochondria (mitochondrion)
 - Power house of the cell
 - Double membrane—cristae
 - Aerobic reactions of cell respiration
 - ATP production
 - Cells requiring more energy have more mitochondria (muscle, liver)
 - Have their own separate genes
 - Duplicate during cell division
 - Lysosomes
 - Contain digestive enzymes called lysozymes
 - Digest bacteria during phagocytosis of WBCs
 - Digest worn out or damaged cells and parts
 - Cause inflammation that can damage healthy tissue if not controlled
 - Centrioles
 - Rod-shaped
 - Organize spindle fibers that separate chromosomes during cell division
 - Cilia (cilium)
 - Many hair-like projections on certain cells
 - Beat in unison causing a wave-like motion to move things across the surface (DOES NOT move the cell)
 - Fallopian tubes, airways in lungs
- Flagella (flagellum)
 - Mobile thread-like projection through the cell membrane
 - Provides motility (moves THE CELL)
 - Sperm is the only human cell with flagellum—has one
- Microvilli
 - Folds of the cell membrane that increase surface area (like an air filter in a car)
 - Increase absorption—small intestine, kidney tubules
- Vacuoles—pinched off plasma membrane during phagocytosis and pinocytosis (see below)

- Cellular transport mechanisms (Table 3-2)
 - Mechanisms to move substances in and out of the cell
 - Diffusion, osmosis, facilitated diffusion, active transport, filtration, phagocytosis, and pinocytosis
 - Diffusion—movement of molecules from an area of greater concentration to an area of lesser concentration along a concentration gradient until equilibrium is reached
 - Molecules randomly move until evenly dispersed in a solid, liquid, or gas
 - CO₂ and O₂ diffuse across the capillary/alveolus junction in the lungs
 - Movement occurs in all substances involved (except solids)
 - Osmosis—diffusion of water through a selectively permeable membrane
 - Water moves from area of high concentration to low concentration until equilibrium is met (regardless of volume)
 - Same as saying moves from area of low concentration of solutes to low concentration of solutes (high concentration of water = low concentration of solutes and vice versa)
 - Isotonic—equal concentration of solutes (Box 3-1)
 - e.g., saline during plasma donation
 - Hypotonic—lower concentration of solutes
 - Hypertonic solution—higher concentration of solutes
 - This occurs because the membrane will not allow anything but water to cross
 - Small intestine and kidneys
 - Facilitated diffusion—diffusion of molecules through a membrane with help from proteins in the cell membrane called transporters or carrier enzymes
 - e.g., glucose, AAs
 - Active transport—energy requiring process of moving molecules against a concentration gradient (lesser to greater concentration)
 - Requires ATP
 - Na⁺ pumps in nerve and muscle cells pump Na⁺ out
 - Filtration—substances are forced through a membrane by mechanical pressure
 - Blood pressure created by heart pumping forces fluids out of capillaries into the interstitial spaces
 - Brings nutrients to cells and waste products out of the blood in the kidneys
 - Phagocytosis—moving cell engulfs something
 - WBCs engulf bacteria
 - Makes vacuoles
- **Pinocytosis**—stationary cell engulfs something
 - Kidney cells engulf proteins to reabsorb them
 - Makes vacuoles
- **DNA**—double strand of nucleotides twisted into a double helix made up of A, T, G, C
 - Sequence of A, T, G, C determines the genetic code
 - The entire code is called the genome
 - Gene—the genetic code for one protein (oversimplified)
 - Each amino acid comes from a triplet of 3 bases called a codon
 - Example: 100 AAs = 100 codons = 300 bases
- **Protein synthesis** (Table 3-3)
 - Occurs in the ribosomes
 - **Transcription**—DNA → mRNA
 - Messenger RNA (mRNA)—a mirror image of DNA made in the nucleus
 - Leaves the nucleus and attaches to a ribosome
 - **Translation**—mRNA → protein (via tRNA)
 - Transfer RNA (tRNA) attaches to the mRNA at a site called the **anticodon** complimentary to the codon
 - tRNA picks up the corresponding AA and forms peptide bonds to make a protein
 - DNA → mRNA → tRNA → protein
- **Genetic disease**—illness due to mistake in DNA
- **Cell division**
 - 2 types—mitosis & meiosis
 - **Mitosis**—one cell divides into 2 identical cells both having a full set of chromosomes
 - How we grow and repair
 - Always happening in certain tissues
 - Skin, stomach epithelium, red bone marrow
 - **Side note:** red bone marrow has **stem cells**
 - Unspecified cell that can develop into different kinds of cells like RBC, WBC, or platelet
 - Hardly or never happens in some tissues like cardiac muscle and nerve tissue
 - **Meiosis**—one cell divides into 4 cells each having have of the chromosomes
 - How we reproduce
 - **Mitosis**
 - Diploid number—full set of chromosomes (46 in humans)
 - Double set of chromosomes although not identical
Stages of mitosis (Table 3-4, Fig 3-5)

1. (Interphase)
2. Prophase
3. Metaphase
4. Anaphase
5. Telophase
 a. Cytokinesis
 b. IPMAT
 c. Interphase—**NOT a phase**
 - DNA replication
 - Resting stage—not dividing (not actually resting)

Prophase
- Chromosomes (2 chromatids—original DNA plus its copy) coil up
- Nuclear membrane disappears
- Centrioles move to opposite ends (poles) and extend spindle fibers to the chromosomes

Metaphase
- Chromosomes line up in the middle
- Centromeres attach to the spindle fibers and divide (2 complete sets of chromosomes)

Anaphase
- Spindle fibers pull chromosomes to each pole

Telophase
- Chromosomes uncoil to become chromatin
- Nuclear membrane reforms
- Cytokinesis—cytoplasm divides and cell membrane closes off

Meiosis
- Results in gametes (egg and sperm)
- One diploid (2n – 46 chromosomes) cell divides twice to form 4 haploid (1n – 23 chromosomes) cells
- Haploid cells have ½ of the DNA (one set) of a normal diploid (2 sets) cell
- Women—ovaries
 - Oogenesis (generate egg)
- Men—testes
 - Spermatogenesis (generate sperm)
- Phases—same as mitosis, but all happen twice except for Interphase

Fertilization—egg and sperm (both haploid) meet and join chromosomes to form a 2n diploid zygote